GCE

Chemistry A

Unit F324: Rings, Polymers and Analysis
Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in Scoris.

Annotation	Meaning
BP	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
BOD	Benefit of doubt given
CON	Contradiction
E	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
A	Omission mark
RE	Rounding error
SF	Error in number of significant figures
	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

Question			Answer	Mark	Guidance
Where circles have been placed round charges, this is for clarity only and does not indicate a requirement					
1	(a)	(i)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW -O-Na OR-COO-Na (covalent bond) ALLOW -O ALLOW delocalised carboxylate
1	(a)	(ii)	(Bromine) would be decolourised/turn (from orange/red/yellow/brown) to colourless OR white precipitate/solid/emulsion (formed) \checkmark	1	IGNORE goes clear DO NOT ALLOW other colours for bromine IGNORE cream precipitate DO NOT ALLOW salicylic acid turns colourless/decolourised IGNORE temperature/fumes
1	(a)	(iii)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous MUST be all correct to score mark ALLOW molecular formulae, i.e. $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{Br}+\mathrm{HBr}$

Question			Answer	Mark	Guidance
1	(a)	(iv)	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} / \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} / \text { propan(-)2(-)ol }$ AND acid $/ \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{SO}_{4}$ (catalyst)	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW 2-propanol DO NOT ACCEPT incorrect name or incorrect formula of alcohol IGNORE reflux/concentrated (acid)
1	(b)	(i)	 No Br_{2} dipole needed Curly arrow to Br from ring OR from within the ring AND curly arrow $\mathrm{Br}-\mathrm{Br}$ bond to $\mathrm{Br} \checkmark$ $\checkmark \quad$ correct intermediate (with charge) $\checkmark \quad$ curly arrow from C-H to reform ring	4	ALLOW mechanism with Br^{+}electrophile (Maximum 3 marks) IGNORE any equations involving a halogen carrier BUT DO NOT ALLOW intermediate with π-system covering less than half of ring: ALLOW + charge anywhere inside the 'horseshoe' Horseshoe must have open end towards Br Apply ecf to error in structure of intermediate (M2)

Question

Question			Answer	Mark	Guidance
1	(b)	(ii)	(In salicylic acid) Ione pair/pair of electrons on $\mathrm{O}(\mathrm{H}) /$ phenol is ~ (partially) delocalised into the ring \checkmark electron density increases/is high ORA \checkmark $\mathrm{Br}_{2} /$ electrophile is (more) polarised ORA \checkmark QWC: delocalised/delocalized/delocalise etc. must be spelled correctly in the correct context at least once	3	ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned ALLOW lone pair/pair of electrons on $\mathrm{O}(\mathrm{H}) /$ /phenol is (partially) drawn/attracted/pulled into delocalised ring IGNORE 'activates the ring' ALLOW more electron rich DO NOT ALLOW charge density or electronegativity ALLOW (salicylic acid) attracts electrophiles more/more susceptible to electrophilic attack ALLOW Br_{2} is (more) attracted $\mathbf{O R} \mathrm{Br}_{2}$ is not polarised by benzene OR induces dipoles (in bromine/electrophile) Delocalise(d) needed to score the first marking point
1	(c)	(i)	Step 1	4	ALLOW reagent mark if HNO_{3} in equation IGNORE $\mathrm{H}_{2} \mathrm{SO}_{4}$ (NOTE: $\mathrm{H}_{2} \mathrm{SO}_{4}$ not required with phenols) IGNORE concentrations of acids/temperature ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous Equations MUST be completely correct for one mark each

Question			Answer	Mark	Guidance
			Step 2 Tin AND concentrated HCl		DO NOT ALLOW 3H2
1	(c)	(ii)	Nitrogen electron pair OR nitrogen lone pair accepts a proton $/ \mathrm{H}^{+}$	1	DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/ H^{+} required) ALLOW nitrogen donates an electron pair/lone pair to H^{+} IGNORE NH_{2} group donates electron pair
1	(c)	(iii)		2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW $-\mathrm{N}_{2} \mathrm{Cl}$ OR $-\mathrm{N}_{2}{ }^{+} \mathrm{C} l$ DO NOT ALLOW - $\mathrm{N} \equiv \mathrm{N}^{+} \mathrm{OR}-\mathrm{N} \equiv \mathrm{N}^{+} \mathrm{Cl}^{-}$ DO NOT ALLOW $-\mathrm{N}_{2}-\mathrm{Cl}$ (covalent bond)

Question			Answer	Mark	Guidance
1	(d)	(i)	monomers join/bond/add/react/form polymer/form chain AND another product/small molecule/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl} \checkmark$	1	IGNORE specific reference to number of molecules
1	(d)	(ii)	 Connectivity is penalised only in this question	2	DO NOT ALLOW -HO (penalise connectivity once only) Both structures must be skeletal DO NOT ALLOW stray sticks (skeletal means CH_{3} attached) DO NOT ALLOW structure with a C shown, e.g. ALLOW
1	(d)	(iii)	 ester link MUST be fully displayed OR	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous

Question	Answer	Mark	Guidance
			ALLOW IGNORE bond angles DO NOT ALLOW more than one repeat unit unless correct repeat unit is indicated IGNORE brackets with n ALLOW any correct repeat unit ALLOW end bonds shown as ---- DO NOT ALLOW if structure has no end bonds
	Total	22	

	uest	Answer	Mark	Guidance
				ALLOW alternative sequences e.g. FIRST react all with $\mathrm{H}_{2} \mathrm{SO}_{4}$ AND $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ colour change with \mathbf{C} and \mathbf{D} eliminates E At least one correct equation and structure of one product from either reaction required for the second mark. NB several possible products for the oxidation of \mathbf{D} THEN react \mathbf{C} and \mathbf{D} with Tollens' distinguishes between \mathbf{C} and \boldsymbol{D}
2	(b)	 curly arrow from H^{-}to $\mathrm{C}^{(\delta+)}$ of correct $\mathrm{C}=\mathrm{O}$ group dipole correct AND curly arrow from $\mathrm{C}=\mathrm{O}$ bond to $\mathrm{O}^{(\delta-)}$ correct intermediate with negative charge on O correct product	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous First curly arrow must come from either a lone pair on H or negative charge on H IF aldehyde reduced OR both carbonyls reduced DO NOT AWARD first mark (second, third and fourth marks can be awarded ECF) IGNORE lack of C-H if entirely skeletal IGNORE curly arrows in second stage Apply ecf to error in structure e.g. CH_{2} missing from the chain or $-\mathrm{COOH} /-\mathrm{COH}$ instead of -CHO IGNORE other products

Question			Answer			Mark	Guidance
3	(a)	(i)			\checkmark	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW peptide chains
3	(a)	(ii)	alanine at pH 6.0 serine at pH 10.0	\checkmark	\checkmark	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + charge on N or H : i.e. ${ }^{+} \mathrm{NH}_{3}$ or $\mathrm{NH}_{3}{ }^{+}$ DO NOT ALLOW '-‘ charge on C i.e. ${ }^{-}$COO DO NOT ALLOW if structure is incomplete

Question			Answer	Mark	Guidance
3	(a)	(iii)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous IGNORE bond angles DO NOT ALLOW more than one repeat unit ALLOW end bonds shown as ---- DO NOT ALLOW if structure has no end bonds IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain IGNORE n

Question			Answer			Mark	Guidance
3	(b)		${ }^{1} \mathrm{H}$ NMR spectrum for serine			2	ALLOW δ values $\pm 0.2 \mathrm{ppm}$, as a range or a value within the range ALLOW a response that implies a splitting into three for a triplet/into two for a doublet
			chemical shift, δ / ppm	relative peak area	splitting pattern		
			2.0 to 3.0	1	triplet		
			3.3 to 4.2		doublet		
			One mark for each correct row $\checkmark \checkmark$				
3	(c)	(i)				1	ALL correct for one mark
3	(c)	(ii)	any two from: no/fewer side effects increases the (pharmacological) activity/effectiveness Reduces/stops the need for/cost/difficulty in separating stereoisomers/optical isomers			2	IGNORE toxic/harmful IGNORE a response that implies a reduced dose IGNORE "it takes (less) time to separate"

Question			Answer	Mark	Guidance
3	(c)	(iii)	 \checkmark one mark for remaining fragment with or $\checkmark \quad$ Fourth mark for structure of both ions shown correctly with $\mathrm{NH}_{2}{ }^{+}$	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + charge on H of NH_{2} groups, i.e. NH_{2}^{+} IGNORE negative (counter) ions
3	(c)	(iv)	idea of separating (the components/compounds) AND idea of (identifying compounds by) comparison with a (spectral) database	1	ALLOW (identifies compounds) using fragmentation (patterns)/fragment ions (but IGNORE molecular ions) IGNORE retention times
			Total	15	

Question		Answer	Mark	Guidance
4	(a)	TMS/tetramethylsilane (which is the) standard (for chemical shift measurements)	1	$\text { ALLOW }\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ ALLOW TMS is the reference OR TMS has $\delta=0(\mathrm{ppm}) \mathbf{O R}$ for calibration OR for comparison IGNORE solvent, unreactive, volatile, it gives a sharp peak
4	(b)	$\text { NMR analysis = } 5 \text { marks }$ M1: Peak(s) at (δ) $9.7=\mathrm{CHO}$ M2: Peak(s) at (δ) $7.1=\mathrm{C}_{6} \mathrm{H}_{4}$ M3: Triplet at (δ) 1.3/peak at 1.3 AND quartet (at δ 2.6)/ peak at $2.6=\mathrm{CH}_{2} \mathrm{CH}_{3}$ M4: Triplet at (ס) 9.7/peak at 9.7 AND doublet (at $\delta 3.7$)/peak at $3.7=\mathrm{CH}_{2} \mathrm{CHO} \quad \checkmark$	9	NOTE: Each peak can be identified from: - its δ value - a range, e.g. "the peak between 0.8 and 2.0 " - its relative peak area (beware two peaks with 2 protons) - its splitting (beware two triplets) - labelling on the spectrum ALLOW CH $\mathrm{CH}_{2} \mathrm{CHO} /$ aldehyde IGNORE reference to phenol ALLOW (four) benzene ring proton(s) IGNORE reference to phenol M3 and M4 Look for a clear link (using words or diagrams) between the two peaks

Question	Answer	Mark	Guidance
	M5: ($\mathrm{n}+1$ rule) Any one of the following - triplet at (δ) 1.3 shows (C with) 2 adjacent $\mathrm{Hs} /$ protons OR adjacent CH_{2} (because of splitting: so triplet) - quartet at ($\delta 2.6$ shows) (C with) 3 adjacent $\mathrm{Hs} /$ protons OR adjacent CH_{3} - triplet at (δ) 9.7 shows (C with) 2 adjacent $\mathrm{Hs} /$ protons OR adjacent CH_{2} - doublet at ($\delta 3.7$ shows) (C with) 1 adjacent H/proton OR adjacent CH QWC: triplet spelled correctly in the correct context once		ALLOW a response that implies a splitting into three for a triplet/into two for a doublet etc. ALLOW "neighbouring" Hs for "adjacent to" Hs IGNORE other comments about splitting once M5 has been awarded DO NOT ALLOW one of M3 or M4 or M5 if triplet not seen
	Aldehyde structure $\mathbf{= 4} \mathbf{~ m a r k s}$ $\checkmark \checkmark \checkmark \checkmark$		ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous IF structure contains $\mathrm{C}_{6} \mathrm{H}_{4} \checkmark$ IF structure contains $\mathrm{C}_{6} \mathrm{H}_{4}$ AND the organic structure contains $\mathrm{CH}_{3} \mathrm{CH}_{2}$ directly attached to the benzene ring OR contains $\mathrm{CH}_{2} \mathrm{CHO}$ directly attached to the benzene ring $\checkmark \checkmark$ IF structure has formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$ AND structure contains $\mathrm{C}_{6} \mathrm{H}_{4}$ AND the structure contains $\mathrm{CH}_{3} \mathrm{CH}_{2}$ AND contains $\mathrm{CH}_{2} \mathrm{CHO}$ AND 1,2 OR 1,3 substituted $\checkmark \checkmark \checkmark$

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU

OCR Customer Contact Centre

Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

